• 基础医学 •

文章编号: 1002 - 0217(2018) 03 - 0205 - 05

三阴性乳腺癌 TCL 诱导 THP - 1 细胞活化及分化的研究

董博翰^{1a,1b},丁园园^{1c}, 戴广丽², 王贝茹^{1a}, 张思远^{1a}

(1. 皖南医学院 a. 生物化学教研室;b. 活性生物大分子研究安徽省重点实验室;c. 药学院 安徽 芜湖 241002;2. 芜湖市中医医院 妇产科 安徽 芜湖 241000)

【摘 要】目的: 研究三阴性乳腺癌细胞裂解物 (TCL) 对单核细胞活化和分化所产生的影响,以及裂解物诱导单核细胞分化的机制。方法: 选取三阴性乳腺癌细胞系 HCC1937 制备细胞裂解物,以人单核细胞系 THP-1 作为研究对象。将 HCC1937 细胞裂解物作用于 THP-1 细胞 检测细胞培养上清液中 TNF- α 、IL-12 的分泌情况,并确定促进细胞因子分泌的最佳裂解物剂量和时间点。流式检测 HCC1937 细胞裂解物作用的 THP-1 细胞形态及细胞表面 CD68 表达的改变,并利用 Q-PCR 的方法检测裂解物作用后 THP-1 细胞中促分化关键因子转录因子 CCAAT/增强子结合蛋白 α (C/EBP α) 和 PU. 1 蛋白的表达情况。结果: HCC1937 细胞裂解物活化的 THP-1 细胞,大量合成分泌 TNF- α 、IL-12 (P < 0.05)。 THP-1 细胞在裂解物作用后 THP-1 细胞中促分化关键因子转录因子 CCAAT/增强子结合蛋白 α (C/EBP α) 和 PU. 1 蛋白的表达情况。结果: BCC1937 细胞裂解物活化的 THP-1 细胞,大量合成分泌 TNF- α 、IL-12 (P < 0.05)。 THP-1 细胞在裂解物作用后细胞体积、颗粒度等会发生增大 细胞表面 CD68 表达上调 (P < 0.05),上述表现符合巨噬细胞的特征。与此同时,作用后 THP-1 细胞中 C/EBP α 表达出现上调 (P < 0.05),而 PU. 1 表达出现下调 (P < 0.05)。结论: 三阴性乳腺癌 HCC1937 细胞裂解物活化人单核细胞 THP-1,并通过促进分化因子 C/EBP α 的表达和抑制 PU. 1 的表达诱导 THP-1 向巨噬细胞分化

【关键词】三阴性乳腺癌;肿瘤细胞裂解物;THP-1;C/EBPα;PU.1

【中图号】R 329.26; R 737.9 【文献标志码】A

[DOI] 10.3969/j.issn.1002-0217.2018.03.001

THP-1 activation and differentiation induced by TCL in triple negative breast cancers

DONG Bohan DING Yuanyuan DAI Guangli "WANG Beiru ZHANG Siyuan Department of Biochemistry "Wannan Medical College "Wuhu 241002 "China

(Abstract] Objective: To investigate the activation and differentiation mechanisms of human THP-4 monocytes stimulated tumor cell lysate (TCL) in triple negative breast cancers. *Methods*: HCC1937 cells of triple negative breast cancers were used to produce TCL and human monocyte THP-4 was used as a research object. The HCC1937 cell lysate was co-cultured with THP-4 and TNF-α and IL-42 levels in the cell culture supernatant were measured to determine optimum dose and time point of HCC1937 cell lysate affecting THP-4 activation. Then the cellular morphology change and CD68 expression in THP-1 cells were detected using flowcytometry. Quantitative PCR was performed to analyze C/EBPα and PU. 1 expression in THP-4 cells activated by HCC1937 cell lysate. *Results*: HCC1937 cell lysate induced THP-4 cells to secrete TNF-α and IL-12 in large quantity (P < 0.05). The cell volume and granularity of THP-4 stimulated by HCC1937 cell lysate were obviously increased (P < 0.05) and CD68 as well as C/EBPα expression on THP-4 cells was spontaneously up-regulated (P < 0.05) whereas PU. 1 was decreased (P < 0.05). *Conclusion*: HCC1937 cell lysate of triple negative breast cancers can activate human monocyte THP-4 and induce it's differentiation through boosting C/EBPα expression yet inhibiting PU. 1.

[Key words] triple negative breast cancer; tumor cell lysate; THP-1; C/EBP_{α} ; PU. 1

三阴性乳腺癌(triple negative breast cancer ,TN-BC)是乳腺癌中的一种特殊类型。这类疾病因 ER、PR、HER-2 均呈阴性表达 ,缺乏针对性的药物作用 靶点 ,所以临床治疗效果不佳、复发率较高^[1-3]。

抗肿瘤免疫治疗是近年来新兴的一种肿瘤治疗方法。其中,基于肿瘤细胞裂解物(tumor cell lysate ,TCL)的抗肿瘤疗法,有着较好的应用前景^[4]。这种物质中含有肿瘤细胞内绝大多数的抗原及蛋白质,因此,其可以被作为一种抗肿瘤的免疫物质去诱

导机体免疫细胞参与抗肿瘤免疫作用[5-6]。

目前,人们已经发现 TCL 可诱导多种免疫细胞的活化,如单核细胞、树突状细胞、T 淋巴细胞、NK 细胞等^[7-8]。不过,TCL 活化免疫细胞并进一步促进细胞分化的具体机理,还不甚清楚。本研究中,我们选取人单核细胞系 THP-1 作为研究模型,利用三阴性乳腺癌细胞 HCC1937 制备的 TCL 诱导其活化及分化,并探讨分化的潜在机制,为基于 TCL 的三阴性乳腺癌免疫治疗方法提供实验依据。

基金项目: 国家自然科学基金青年基金(81402351);海外留学归国基金

收稿日期:2017-10-10

作者简介: 董博翰(1980-) 男 副教授 博士 (电话)15178598913 (电子信箱) 240151563@ qq. com。

1 材料与方法

1.1 实验材料与仪器 HCC1937 细胞系购于中国 科学院典型培养物保藏委员会细胞库;人白血病单 核细胞株 THP-I 购于无锡菩禾生物技术有限公司; THP-IRPMI 1640 培养基购于 hyclone 公司; 胎牛血 清(FBS)购于天津四季青公司;TNF-α、IL-12 检测试 剂盒购于武汉华美生物技术有限公司;LPS 购于碧 云天生物技术有限公司; PE 偶联的抗人 CD68 单克 隆抗体购于美国 biolegend 公司 6 孔培养板 (美国 Corning 公司; RNAprep Pure 培养细胞/细菌总 RNA 提取试剂盒、FastQuant RT 试剂盒及 SuperReal 荧光 定量预混试剂购于北京天根生物技术有限公司;其 他试剂为国产市售分析纯。CO、培养箱购于美国 Thermo Forma 公司:酶标检测仪购干美国 Bio-Rad 公司;相差显微镜购于日本佳能公司;流式细胞仪购 于美国 BD 公司;实时荧光定量 PCR 仪购于美国 A&B 公司。

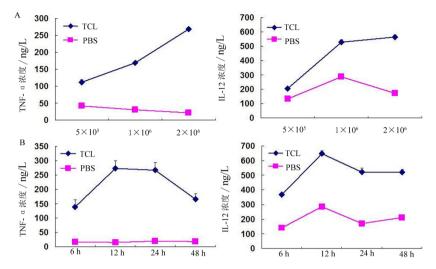
1.2 三阴性乳腺癌细胞 HCC1937 细胞裂解物的制备 将培养好的对数生长期的 HCC1937 细胞用 0.25% 胰酶消化 ,于 15 mL 离心管中制成单细胞悬液 ,用 $1 \times PBS$ 洗涤细胞 3 次 ,离心 ,弃去上清后再用 PBS 重悬细胞 ,接着 ,于 -80% 冻存 15 min ,37% 温育 5 min ,震荡 1 min ,反复操作 5 次 ,然后离心将上清转移到 1.5 mL EP 管中 ,即得到 HCC1937 细胞裂解物。

1.3 HCC1937 细胞裂解物作用后的 THP-1 分泌 TNF- α 、IL-12 检测 将生长状态良好的 THP-1 细胞接种于 6 孔细胞培养板中 1.6×10^6 THP-1 细胞/孔 (2 mL) RPMI 1640 培养液。将 5×10^5 、 1×10^6 、 2×10^6 的三阴性乳腺癌 HCC1937 细胞所制备的裂解物,分别同 THP-1 细胞共孵育 48 h。与此同时,将只用 $1 \times PBS$ 作用的 THP-1 细胞作为阴性对照组。然后,收集 THP-1 细胞培养上清液,ELISA 检测TNF- α 、IL-12 的分泌情况并绘制剂量-效应曲线,以筛选出 HCC1937 细胞裂解物的最佳浓度。用 1×10^6 的 HCC1937 制备细胞裂解物,同 THP-1 细胞共孵育 $6 \times 12 \times 24 \times 48$ h。同时设立 PBS 阴性对照组。各时间点分别收集细胞培养上清液,ELISA 检测TNF- α 、IL-12 的分泌情况并绘制时间-效应曲线,以筛选出裂解物作用的最佳时间点。

1.4 流式检测 HCC1937 细胞裂解物作用后的 THP-1 细胞形态及 CD68 表达 用 1×10^6 的 HCC1937 制备细胞裂解物 ,同 THP-1 细胞共孵育 48 h ,并在培养液中加入 LPS 终浓度为 $0.05~\mu g/L$ 。同时设立低剂量 LPS 对照组 ,LPS 终浓度 $0.05~\mu g/L$

L; 高剂量 LPS 对照组 ,LPS 终浓度 0.25 μg/L; 1 × PBS 阴性对照组。流式细胞术检测各组 THP-1 细胞 表面共刺激分子 CD68 的表达: 首先,制备各组 THP-I 单细胞悬液。接下来,每个细胞样品中加入 200 μL 4% 多聚甲醛室温避光 20 min ,12 000 r/min 离心5 min ,0.1% trition X-100 1 mL 室温避光 10 min 离心后用荧光标记的抗 CD68 抗体室温染色细 胞 30 min; PBS 洗涤液洗涤两次染色后的 THP-1 细 胞 接着 12 000 r/min 离心 5 min 弃去上清液保留 沉淀;最后用1×PBS 重悬 THP-1 细胞后上机检测。 1.5 Q-PCR 分析 THP-I 中 C/EBPα 和 PU. 1 表达 情况 1×10^6 的 HCC1937 细胞裂解物作用于 THP-1 细胞 ,于 6、12、24、48 h 收集作用后的 THP-1 细胞 及相应的 1×PBS 对照组细胞。提取各细胞样品的 总 RNA ,反转录获得 cDNA 分子。以 cDNA 为模板 配置 PCR 反应体系,在 Q-PCR 仪中两步法进行 PCR 反应,根据输出的 Ct 值分析实验结果,计算 ΔCt 值及各样品相对表达量。

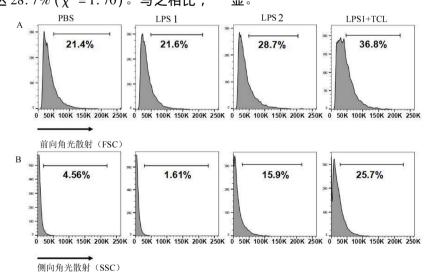
1.6 统计学分析 所有结果至少完成 3 次代表性实验。利用 SPSS 18.0 软件处理全部数据 ,对于方差齐的两样本均数 ,采用 t 检验;对于方差不齐的两样本均数 ,采用秩和检验来进行比较。百分比的比较 ,采用卡方检验。P < 0.05 为差异有统计学意义。


2 结果

2.1 HCC1937 细胞裂解物诱导 THP-1 活化分泌细胞因子 TNF- α 、IL-12 通过将不同剂量的 HCC1937 细胞裂解物同 THP-1 细胞共同作用 48 h 后 我们发现。同 PBS 对照组相比 5×10^5 、 1×10^6 和 2×10^6 HCC1937 细胞制备的裂解物都能够促进 THP-1 分泌 TNF- α (P < 0.05 其中 5×10^5 剂量组 t 值为 24. 62 $\lambda \times 10^6$ 剂量组 $\lambda \times 10^6$ 利量组 $\lambda \times 10^6$ 利益 $\lambda \times$

接下来,我们选择促进 THP-1 分泌细胞因子能力更强,同时又不影响细胞培养状态的 1×10^6 这个裂解物剂量,进行后续的作用时间摸索。我们发现,在将裂解物同 THP-1 孵育 6 h 后 TNF- α 、IL-12 的分泌水平就升高 (P < 0.05,其中 TNF- α 检测组 t 值为

41.25 ,IL-12 检测组 t 值为 30.23) ,12 h 时 TNF- α 、IL-12 的分泌水平达到最高 ,分别为 272.39 ng/L、647.10 ng/L。这种高分泌水平持续到 24.48 h 时


TNF- α 、IL-12 的分泌量会出现下降,但同 PBS 对照组相比仍处于较高水平 (P < 0.05, TNF- α 检测组 t 值为 18.44, IL-12 检测组 t 值为 39.23)(图 1B)。

A. TNF- α 、IL-12 分泌剂量依赖曲线; 5×10^5 , 1×10^6 2 $\times 10^6$ 代表制备细胞裂解物的细胞数; B. TNF- α 、IL-12 分泌时间依赖曲线。

图 1 HCC1937 细胞裂解物促 THP-1 细胞分泌 TNF- α 、IL-12 2.2 HCC1937 细胞裂解物促进 THP-1 细胞形态改变 THP-1 是一种单核细胞系,具有进一步分化成巨噬细胞等抗原递呈细胞的潜能。 THP-1 分化后细胞形态会发生改变。通过流式检测细胞裂解物 + 低剂量 LPS 作用后的 THP-1 细胞,我们发现:同对照组相比,THP-1 细胞流式检测前向角光散射的检测数值发生了明显的增加 检测值 50 K 以上的细胞比例达 36.8% (χ^2 = 6.21) 这和高剂量 LPS 作用后的细胞检测值基本相似,高剂量 LPS 作用的 THP-1 细胞中高检测值比例达 28.7% (χ^2 = 1.70)。与之相比,

低剂量 LPS 作用后的 THP-1 细胞和 PBS 对照组 THP-1 细胞 ,细胞比例都相对较小 ,分别为 21.6% ($\chi^2=0.03$) 和 21.4% (图 2A) ; 同前向角光散射类似的 ,细胞裂解物 + 低剂量 LPS 组 THP-1 细胞中 ($\chi^2=16.835$) 高侧向角光散射检测值细胞比例高于低剂量 LPS 组($\chi^2=1.332$) 和 PBS 对照组 ,而与高剂量 LPS 组类似($\chi^2=6.438$) (图 2B)。上述结果提示: 细胞裂解物作用组、高剂量 LPS 作用组的细胞形态同 PBS 对照组、低剂量 LPS 组相比差别明显。

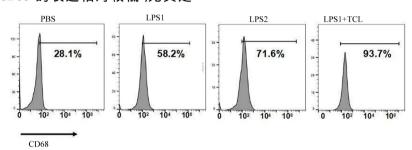

A. THP-I 细胞前向角光散射的改变; PBS:1 × PBS 对照组 ,LPS 1:低剂量 LPS 0.05 μ g/L 作用组 ,LPS 2:高剂量 LPS 0.25 μ g/L 作用组 ,LPS1 + TCL:LPS 0.05 μ g/L、HCC1937 细胞裂解物联用组; B. THP-I 细胞侧向角散射光的改变。

图 2 HCC1937 细胞裂解物作用的 THP-1 细胞形态改变

2.3 HCC1937 细胞裂解物上调 THP-1 细胞 CD68 表达 CD68 是巨噬细胞特异性的细胞表面分子。

THP-1 向巨噬细胞分化 这一表面分子会出现上调。 在流式检测细胞裂解物作用后的 THP-1 形态变化 的同时 我们也检测 THP-1 细胞 CD68 的表达情况。 LPS + 细胞裂解物作用后 ,THP-1 细胞表面 CD68 的表达出现上调 表达率达 93.7% ($\chi^2=91.55$) ,而高剂量 LPS 作用的 THP-1 细胞 CD68 表达也出现上调 表达率为 71.6% ($\chi^2=38.72$)。不过 ,PBS 对照组、低剂量 LPS 组 CD68 的表达相对较低 ,尤其是

PBS 对照组的表达率只有 28. 1% (χ^2 = 18. 36) (图 3)。这应该是 THP-1 自发分化后的 CD68 基础表达率。如将这一基础表达率减除后 ,则 LPS + 细胞裂解物组 CD68 表达率为 65. 6% ,高剂量 LPS 组为43. 5% ,低剂量 LPS 组为 30. 1%。

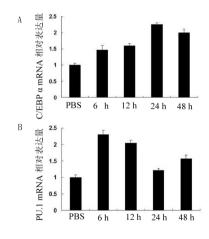

PBS:1 × PBS 对照组 ,LPS 1:低剂量 LPS 0.05 $\mu g/L$ 作用组 ,LPS 2:高剂量 LPS 0.25 $\mu g/L$ 作用组 ,LPS1 + TCL:LPS 0.05 $\mu g/L$ 、HCC1937 细胞裂解物联用组。

图 3 HCC1937 细胞裂解物上调 THP-I 细胞表面分子 CD68 的表达

2.4 HCC1937 细胞裂解物对单核细胞分化标志物 C/EBPα 和 PU.1 表达的影响 C/EBPα 和 PU.1 是 控制单核细胞分化的关键因子,它们的变化直接影 响单核细胞分化方向。Q-PCR 检测结果显示:同 PBS 对照组相比,细胞裂解物作用的 THP-1,其 C/EBPα和 PU.1 表达都会出现明显的增加。但随 着作用时间的增加 ,C/EBPα 的表达逐渐增加 ,而 PU.1的表达则逐渐下降。其中 $C/EBP\alpha$ 的表达量 在 6 h 时是 PBS 对照组的 1.47 倍 而 12、24 h 分别 为对照组的 1.59 倍和 2.25 倍 ,至 48 h ,C/EBPα 表 达量则为对照组的 2.01 倍。其 24 h 和 48 h 表达量 同 PBS 对照组相比差异有统计学意义(P<0.05 其 中 24 h 检测组 t 值为 17.06、48 h 检测组 t 值为 12.87) 6 h 和 12 h 差异无统计学意义(P > 0.05, 其中6h 检测组t 值为4.99、12h 检测组t 值为9. 57) (图 4A);与之不同的是 "PU. 1 的表达在 6 h 时 即达最大值,为对照组的2.29倍,之后开始下降,至 48 h 下降为对照组的 1.57 倍。其中 6、12 h 同 PBS 对照组相比差异有统计学意义 (P < 0.05,其中 6 h 检测组 t 值 39.15、12 h 检测组 t 值为 34.5) 24、48 h 相比差异无统计学意义(P>0.05 其中24 h 检测 组 t 值为 3.12 48 h 检测组 t 值为7.48)(图 4B)。 这些结果表明 ,HCC1937 细胞裂解物能促进 THP-1 细胞中分化因子 C/EBPα 的表达 ,但却抑制另外一 种分化因子 PU.1 的表达。

3 讨论

肿瘤细胞裂解物的主要抗肿瘤机理是可以活化 免疫细胞。免疫细胞的种类很多,不同免疫细胞的 活化是一个连续分阶段的过程。肿瘤细胞裂解物中的抗原或蛋白接触免疫系统后,抗原递呈细胞如巨噬细胞、树突状细胞会摄取抗原蛋白,并将其递呈给T淋巴细胞,使其特异性活化以发挥抗肿瘤作用^[9]。在这些免疫细胞中,抗原递呈细胞往往又是由单核细胞分化而来^[10]。因此,促进单核细胞活化及向抗原递呈细胞分化,将有利于肿瘤细胞裂解物抗肿瘤作用的发挥。

A. 各作用时间点 ,THP-I 中 C/EBPα mRNA 相对于 PBS 对照组的表达量; B. 各作用时间点 ,THP-I 中 PU. 1 mRNA 相对于 PBS 对照组的表达量; PBS:1 × PBS 对照组。

图 4 HCC1937 细胞裂解物作用后的 THP-1 中 C/EBP_{α} 、PU. 1 的表达

为验证肿瘤细胞裂解物对单核细胞活化及分化的影响。我们选取人单核细胞 THP-1 作为研究对象 在将不同剂量的 HCC1937 细胞裂解物同 THP-1 细胞共同作用之后,我们发现虽然 2 × 10⁶ 的 HCC1937 细胞制备的细胞裂解物可以显著刺激

THP-1 细胞分泌 TNF- α ,但该剂量的细胞裂解物同 THP-1 细胞共孵育 48 h 后会影响细胞生长状态。因此,在后续实验中我们选择了 1×10^6 的 HCC1937 细胞制备裂解物。通过将这一剂量的细胞裂解物,同 THP-1 细胞共同孵育 $6\times12\times24\times48$ h 后我们发现:HCC1937 细胞裂解物可以显著刺激 THP-1 分泌 TNF- α 和 IL-12。TNF- α 和 IL-12 都是活化单核细胞分泌的细胞因子,这两种细胞因子分泌水平的增加说明 HCC1937 细胞裂解物可以激活单核细胞。

单核细胞是抗原递呈细胞的前体细胞 活化的单核细胞会向不同类型的抗原递呈细胞 ,如巨噬细胞、树突状细胞分化。在本研究中 流式细胞检测结果显示:同 PBS 对照组相比 ,细胞裂解物作用的 THP-1 前向角光散射(FSC)及侧向角光散射(SSC)明显增大。前向角光散射增大证明细胞体积明显增大 ,侧向角光散射增大代表细胞颗粒度增大 ,这些都符合单核细胞向巨噬细胞分化的特征[11-12]。与此同时 ,LPS 和细胞裂解物共同作用的 THP-1 细胞表面分子 CD68 出现上调。这说明在 HCC1937 裂解物作用下 ,单核细胞 THP-1 会分化成为巨噬细胞^[13]。

为了进一步验证 THP-1 细胞向巨噬细胞分化。 我们利用 Q-PCR 的方法检测了裂解物作用后的 THP-I 细胞中分化关键因子 C/EBPα (CCAAT enhancer binding protein α)和 PU.1 的表达情况。 PU.1及 C/EBPα 是调控单核-巨噬细胞系统分化的 关键转录因子。研究表明 PU.1 的表达可以抑制单 核-巨噬细胞的定向分化[14]。与之相反的,分化诱 导因子 C/EBPα 的表达可以诱导单核细胞向巨噬细 胞分化[15]。通过 Q-PCR 检测 HCC1937 细胞裂解物 作用的 THP-1 细胞 C/EBPα 及 PU. 1 的表达我们发 现:裂解物作用的 THP-1 细胞 $\mathcal{L}/EBP\alpha$ 的表达出现 增加,而另外一种分化调节因子 PU.1 则随细胞裂 解物作用时间的增加,表达量逐渐减少。这又进一 步证明了 HCC1937 裂解物可以诱导 THP-1 向巨噬 细胞分化,且分化的机制同细胞中分化调节因子 C/ $EBP\alpha$ 的上调和 PU.1 的下调有密切联系。

综上所述,本研究发现三阴性乳腺癌细胞 HCC1937 裂解物可以刺激活化人单核细胞 THP-1 分泌 TNF- α 及 IL-12 ,并通过上调 THP-1 中 C/EBP α 和下调 PU. 1 的表达,诱导 THP-1 向巨噬细胞分化。分化后的巨噬细胞,将可以通过分泌细胞因子或递

呈抗原给淋巴细胞,发挥更强的抗肿瘤免疫作用。 这些发现将为三阴性乳腺癌细胞裂解物疫苗的临床 应用提供理论依据。

【参考文献】

- [1] GADI VK ,DAVIDSON NE. Practical Approach to triple-negative breast cancer [J]. J Oncol Pract 2017 ,13(5):293-300.
- [2] JITARIU AA ,CIMPEAN AM ,RIBATTI D ,et al. Triple negative breast cancer: the kiss of death [J]. Oncotarget ,2017 ,8 (28): 46652 - 46662.
- [3] ANAREOPOULOU E SCHWEBER SJ SPARANO JA et al. Therapies for triple negative breast cancer [J]. Expert Opin Pharmacother 2015, 16 (7):983-998.
- [4] SUN W FANG M CHEN Y et al. Delivery system of CpG oligode– oxynucleotides through eliciting an effective T cell immune response against melanoma in mice [J]. J Cancer 2016 7 (3):241 –250.
- [5] YAN Y ,FANG M ,XUAN W ,et al. The therapeutic potency of HSP65-GTL in GL261 glioma-bearing mice [J]. J Immunother , 2015 38 (9):341 – 349.
- [6] XUAN W ,YAN Y ,WAN M ,et al. Antitumor activity of mHSP65– TTL enhanced by administration of low dose cyclophosphamide in pancreatic cancer-bearing mice [J]. Int Immunopharmacol ,2015 , 27 (1):95 – 103.
- [7] 朱学军 槽雪涛 擂虹 為 弱酸洗脱提取的肿瘤抗原肽致敏的 树突状细胞对 CTL 的体内外激活 [J]. 中华微生物学和免疫学杂志 2000 20(2):98.
- [8] DONG BH ,SUN LG ,WU XL ,et al. Vaccination with TCL plus MHSP65 induces anti-lung cancer immunity in mice [J]. Cancer immunol immun 2010 ,59(6):899 –908.
- [9] SMITHGARVIN JE ,KORETZKY GA ,JORDAN MS. T cell activation [J]. Annual Review of Immunology ,2015 ,27 (27):591 619.
- [10] JAKUBZICK CV ,RANDOLPH GJ ,HENSON PM. Monocyte differentiation and antigen-presenting functions. [J]. Nat Rev Immunol , 2017 ,17 (6):349 362.
- [11] 魏然 陈彬 ,甘田福 ,等. 流式细胞术检测外周血 CD14 + 细胞的 活化程度 [J]. 中华检验医学杂志 2003 26(1):22 24.
- [12] 张美英. 吞噬细胞和巨噬细胞 [J]. 生物学通报 ,1992(10):33.
- [13] 崔璐华 汪庸晋 汪金胜 筹. 不对称二甲基精氨酸对 THP-1 源性巨噬细胞表达巨噬细胞移动抑制因子的影响 [J]. 中国动脉硬化杂志 2010 3:169-172.
- [14] ZHU XJ, YANG ZF, CHEN Y, et al. PU. 1 is essential for CD11c expression in CD8 (+)/CD8 (-) lymphoid and monocyte-deriveddendritic cells during GM-CSF or FLT3L-induced differentiation [J]. PLoS One 2012, 7(12):e52141.
- [15] 应霁 , 王伟铭. 转录因子 CCAAT 增加子结合蛋白 α 的研究进展 [J]. 上海交通大学学报(医学版) 2015 , 35(2):262 267.